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ROLE OF COHERENCES IN THE RELAXATION OF ADSORBATES

Henk F. Arnoldus and Thomas F. George
4.-

Departments of Physics & Astronomy and Chemistry

239 Fronczak Hall
State University of New York at Buffalo

Buffalo, New York 14260

ABSTRACT

Adsorbed species on a solid-state surface interact with the large number of

substrate modes, which gives rise to thermal relaxation. Commonly, the

temporal evolution of the quantum state of the adsorbate is described by a

master equation for the level populations (vibrational bond, internal modes,

etc). It is pointed out that this approach does not necessarily give a

correct account of the coupling to the solid when the effective level-widths

become comparable to the level separations, or larger. It is shown that the

evolution of the populations does not decouple anymore from the time

evolution of the coherences (off-diagonal matrix elements), which implies

that a random-phase approximation cannot be justified, and that the density

matrix of the adsorbate is not only determined by the Golden Rule transition

constants. Especially the line profiles turn out to be very sensitive to

the coherence-coherence couplings. Although the coherences vanish in

thermal equilibrium, their time-regression operator, and hence their mutual

couplings and their couplings to the populations, which determines the

absorption profile, does not. This information is lost in a master-equation

treatment of relaxation. Accession Far
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IINTRt-IUCTION

Coupling of adsorbed atoms or molecules on a surface to the degrees of

freedom of the substrate, amounts to effective thermal relaxation of the

internal molecular modes, or the vibrational bond with the solid. For

molecules like CO on a metal surface, the excitation of internal stretching

modes (vibrational levels) corresponds to a charge displacement, which

couples to the motion of the electrons in the conduction band of the metal.

Interaction of the electron cloud of the single molecule with the large

number of electrons in the substrate then provides that the small system

(the admolecule) is driven towards thermal equilibrium with the heat bath

1
(the metal). This process is usually regarded as electron-hole pair

formation in the metal. 2 Another example of relaxation of adsorbates

*pertains to the kinetic coupling of an adatom in a vibrational

' (electromagnetic) bond with a crystal to the thermal motion of the surface

atoms, which support the bond. In this fashion the kinetic and potential

energy of an atom in an excited bound state on the surface, can be

3
transferred into kinetic and potential energy of the crystal atoms.

Usually, this process is viewed as a phonon exchange between the adatom and

4
the substrate. Finally, we mention the irreversible dipole-coupling of dye

5
molecules (coatings) on a dielectric to the surface-plasmon field. This

interaction is responsible for a dramatic change in the lifetime of the

6
molecule, which in turn yields the celebrated phenomenon of enhanced Raman

scattering, and surface-induced (Raman) resonances.

Commonly, the above-mentioned mechanisms for molecular relaxation, due

to coupling with the substrate, are incorporated in the rate equations for

the level populations n.(t) (internal vibrational, kinetic or electronic) of

7
* the adparti.cle as

VI
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d . t) - (n (t)a j - nj(t)a ) + 0 .0
dt i( ii - i' (1.1)

j

where the transition constants aij are determined by the Golden Rule. Level

1i> decays to the other levels Ij> at a rate niaij (loss term), and gains

population from transitions of levels Ij> to Ji> at a rate n aji. Balancing

the contributions then gives the master equation (1.1), where the ellipsis

8
denotes the remaining interactions with, for instance, a laser field. In a

more thorough approach, which yields exactly the same result for the

coupling with a heat bath, one starts with the full Schr6dinger equation for

the density operator p(t) of the solid, the adparticle and the interaction.
9 10

With standard reservoir theory, projection techniques or a Langevin

approach,9 one then derives an equation of motion for the reduced density

operator p0(t) of the adsorbate, defined as

P0 (t) = Trpr(t) , (1.2)

where Tr indicates the partial trace over the reservoir states. Taking the
r

diagonal part of the equation then results in the master equation (1.1) for

the populations

nit W <i1P0(t)li> 01.3)

If we consider the off-diagonal matrix elements (the coherences) of P0(t),

we obtain

d
d <iJP 0 (t)> - (-i(w. - ) (A + Aj)}<itp0 (t)J> + "." , (1.4)

dt 0 i 2j

A-. for i j j, where
A.

A , a.j (1.5)

A .

%A
.
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equals the inverse lifetime of level 1i>, due to transitions to every other

level Ij>, and Awi is the energy of li>. Hence any initial coherence

<i 0 (O)lj> vanishes exponentially on a time scale (A. + A.) in the* . 1 J

.- .- evolution to thermal equilibrium (long-time limit t * , or steady state).

In a random-phase approximation one omits the coherences from the beginning

and considers only the time evolution of the populations. Since Eq. (1.4)

for the coherences does not couple to the master equation (1.1) for the

populations, this approach is justified by more elaborated theories.

However, this is not the whole story. First, the master equation does

not embody the full dynamical behavior of the adparticle. It only provides

information on the distribution of populations, the energy content of the

molecule and the energy transfer into the solid. (Eq. (1.1) implies an

* .' equ.ation for energy conservation, because a level at i., which is populated

with nit), corresponds to an energy n. w . of the molecule.) Spectral

information, like the line profiles for the absorption of radiation and the

temporal correlations between the populations, which appear for instance in

the response to a pulsed laser, are governed by the time regression of the

coherences, rather than by the master equation. Therefore, in discarding

Eq. (1.4) one loses valuable information on observable properties of the

system.

*Second, in the derivation of the master equation there is always the

tacit assumption that the width of a specific transition IiD mj* I which

equals aij, is much smaller than the level separation 1wi - W.1. Then one

'-*- drops fast-oscillating terms with the Bohr frequencies w. w. - w., with

, . the argument that they will approximately average out to zero. This is a

correct procedure if .ijI >> a... In general, however, it is not obvious

ci ii

,-- - that this condition is always satisfied. To be specific, for electron-hole

.. . . . .."...*...*-.. .2



*pair formation, both a and a acquire values of the order of a
i ij

picosecond, and for CO on copper, for instance, the inverse lifetime of the

stretching modes exceeds the level separations. In the case of adsorption

of atoms on a crystal, the timescales for relaxation typically range from

nanoseconds to picoseconds. For weakly-bounded atoms (shallow potentials)

the levels become closely spaced, and their separations can easily assume

* the order of magnitude of the damping constants.

In this paper we shall retain the couplings, which are due to the

overlap of levels, and point out their significance. Especially the

absorption profile for weak radiation appears to be sensitive to the

* coherence-coherence coupling, as will be illustrated by an example.

II. RELAXATION THEORY

In order to display clearly the various approximations and to set the %~.

V'

notation, we summarize the basic elements of relaxation theory in this

12
section. With H the Hamniltonian of the adsorbate, which includes the

a

binding energy to the surface (attractive force of electromagnetic origin),

and H rthe substrate Hamniltonian, the equation of motion for the density

operator p(t) of the active system reads

iAtp(t) [ Ha + Hr + SR, p(t)J, p(t) ~* p(t), TrP(t) =1 . (2.1)

Here the interaction between the molecule and the substrate, which gives

rise to the relaxation, is divided as SR, where S -S 1 is a molecular

operator (S = systems), and R = Rt (reservoir) is an operator in the

subspace of the solid. For instance, for coupling by single-phonon

transitions, the operator S equals the derivative of the binding potential

well, perpendicular to the surface, and R is the amplitude operator of an.

atom in the crystal. 13With a Taylor expansion it is always feasible to



6

factorize the interaction as ZiSiRi, but in order to avoid many obfuscating

subscripts, we only retain a single term. In the case of phonon coupling,

the subscript i indicates the number of phonons which are involved in a one-

step transition. By writing SR for the interaction, we only keep track of

single-phonon transition. This is already very accurate if the transition

frequencies A.. are smaller than the Deybe frequency of the crystal, since

then every pair of levels is resonantly couplied by a single-phonon

interaction.

The standard integral of Eq. (2.1), which is suitable for the

development of relaxation theory, is most conveniently derived with the aid

- of the interaction picture. With the Liouvillians

-h- [H . L [H.' (2.2)! a a ' r r '

we define the transformed density operator as

a(t) = exp(i(La + L )t) p(t) (2.3)

which obeys the equation of motion

i$do(t) = [S(t)R(t),o(t)] (2.4)

The free evolution of S and R is displayed in their time dependence,

according to

S(t) = exp(iL t)S R(t) exp(iL t)R (2.5)
a r

Iterating Eq. (2.4) twice and differentiating the result with respect to

time then yields the integral

iaa(t) = $-[S(t)R(t),o(O)]
. . ."."

- S
° -

.
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t-i 2 dt'[S(t)R(t),[S(t')R(t'),o(t')]] (2.6)

0

As the initial value we can choose arbitrarily o(0) = a0(O)p eq with o0(0) =

Tr o(0) the reduced density operator of the adsorbate and p the thermal-
r eq

equilibrium state of the solid. By definition, peq commutes with H r and we

shall assume that

TrrRpeq = 0 (2.7)

This means that the interaction does not give rise to a net energy content

of the molecule, which is exact in most cases. Otherwise the restriction

(2.7) can be enforced by a proper transformation of p(t), which shifts the

interaction over its average. As a second step we write o(t') = a 0(t')Peq +

correction, which can always be done. After taking the trace in Eq. (2.6)

over the reservo'r states, we then obtain

- t

a (t)-'o0 G()S(t)S(t-) (t-T)

00" + G(T) o 0(t-T)S(t-T)S(t) -G(T) S(t)a 0(t-T)S(t--r)

- G(t)S(t-r)o0 (t-T)S(t)) + correction (2.8)

For later purposes we do not impose the condition a* = ot which would allow I-

a contraction of terms. The interaction with the substrate is incorporated

* min the complex-valued reservoir correlation function

G(T) = 20-2TrrR(T)RPeq (2.9)

which can be evaluated immediately for any prescribed R and H Among other
r

features, this G(T) encompasses the temperature dependence of the coupling.

Equation (2.8) is the usual starting point for reservoir theory.
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A particularly transparent representation of Eq. (2.8) emerges if we

adopt a Liouville-operator notation for the couplings in the integrand. To

this end, we substitute S(t) exp(iL t)S, transform back to the p-picture,a %o

and define

W-
L =S,.) (2.10)

Then Eq. (2.8) assumes the form

i t - iL

iLP 0 (t) LaP(t) - -L dT(G(T)e a (SP0(t-[))t 0 a 0LJ 2n'S-f-

* -iL ' .r

-G(T) e a (po(t-T)S)} + correction (2.11)

Next we introduce the correlation operator

L (T). = S-G(T) - G(T) "S , (2.12)

which enables to rewrite Eq. (2.11) compactly as

As ongas hecorrection terms are taken into consideration, and provided

that condition (2.7) holds, this is still an exact integral of Eq. (2.1).
the t) = L L d e mLe()oy) + correction f

III. RESERVOIRCONDITIO

A solid has a broad, continuous spectrum of modes, which are coupled to

the molecule by thectinteraction. This property assures that the i.

correlation fu.ction G(T) from Eq. (2.9) decays to zero very fast for

the emoy intheintracton.."U
-"3
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increasing T. Typically, the time width of G(O) is of the order of the

inverse cut-off frequency of the mode distribution, which is the Debye

frequency for a harmonic crystal. Hence this time is much shorter than any

time scale on which ao(t) varies, due to its coupling with the same

continuum. If we indicate the correlation time of the reservoir by T , and

the damping constant for the transition 1i> * Ij> by aij, as in Eq. (1.1),

then the reservoir condition reads

a..T << (3.1)ij c

for every i,j. For rare-gas atoms on a crystal like KCI, typical values of

the product a..T range from 0.1 to 0.01. By definition, the value of the
ij c

integral in Eq. (2.13) has an order of magnitude of a.., and it is easy to1J12 2

estimate that the correction terms are of the order of a.. 2 . Therefore

they can be discarded in comparison with a... In the interaction picture,ij

a(t-i) evolves on a time scale a. 1, which implies that we can replace

0o(t-) by o (t) in Eq. (2.8). In the p-picture the density operator

oscillates with the Bohr frequencies, and hence the corresponding

approximation in Eq. (2.13) is14

-exp(iL (t- ))p (t-T) : exp(iL t)P (t) (3.2)

Then we can take p0 (t) outside the integral, and again with condition (3.1)

we can replace the upper integration-limit by t = . Combining everything

then leads to the concise form of the equation of motion

1- P(t)= (La - ir)P (t) (3.3)

The Liouville operator r is defined by

1 0 -iL iL T
r =f  rLs  dT e a L ( ) a (3.4)

..



which accounts for the relaxation of the molecule, due to the coupling with

the modes of the substrate. Recall that the only assumption in deriving Eq.

(3.3) is the condition (3.1), which is fairly justified for adsorbates.

Equations (3.3) and (3.4) constitute the full effect of the coupling to the

substrate, including the time evolution of the coherences, coupling between

coherences, level shifts, etc. The advantage of the Liouville approach, in

contrast to a master-equation treatment, which relates matrix elements, is

"- that the dynamics of the interaction is completely disentangled from the

structure of the equation of motion, Eq. (3.3).

IV. EVALUATION OF r

+- - Equation (3.4) defines the relaxation operator r in terms of the

Liouvillians L and L (T). If we remember that
a c

exp(-iL T)' = exp(iH T/A)" exp(¥iH /1 ) (4.1)a a a

and then insert the definition (2.12) of L (T) into Eq. (3.4), we find thatc

7 can alternatively be represented by

=L (Q-Q) , (4.2)

which involves the Hilbert-space operator

I2...-iLta;" " = J dTG(T)e aS (4.3)

Notice that Eq. (4.2) still contains four terms, because L is a commutator.

This also immediately implies the properties

.F(o) o , Tr (ro) 0 (4.4)
a

7--.- 

--

2 .



for any a. These relations are necessary for the conservation of

Hermiticity and trace in the time evolution of p0 (t).

Since L appears in an exponent in the definition of Q, an expansion in

matrix elements is most convenient on a basis where L is diagonal, e.g.,a

the adsorbate states i>. For simplicity we shall suppose that the states

i> are non-degenerate. This is no restriction at all, but it avoids

cumbersome notations. In terms of the projectors

P =i><il (4.5)

the exponential in Eq. (4.3) can be expanded as

exp(-iLa)" = exp(-iA ijT)P i " P. (4.6)

ij

Then Q assumes the simple form

2 gi P SP. (4.7)Q =2- ji 1 J 'L=

ii

where the reservoir parameters g.. are defined by
ji

g f0dT exp(-ii .T)G(T) , (4.8)" ji it 0 e

which is essentially the Laplace transform of G(i). Substituting Q and its

Hermitian conjugate into Eq. (4.2) gives

ro = ( S si><i - o g i><jI"' ~2 Sij ji><l i

ij

-g.Jii><jloS + gij oli><jIS} , (4.9)

which defines the action of r or an arbitrary Liouville vector a. Here S ii
= <ilSlj> is a matrix element of the molecular part of the interaction. ".

1 ?



Equation (4.9) is a hybrid representation of r, since it contains

matrix elements Sij, as well as the operator S itself. With the closure

relation

-Pi= 1 (4.10)

i

we can cast Eq. (4.9) in the form

ro = Ckiij lk><io + c kiij olj><kI)
ijk

2 L (C 9 j. i><j jajk>< j + ck ij 0<kloIJ><iI) (4.11)

ijk9

where we introduced the coefficients

CkQ, = Sk 9.Sn (4.12)

Hence the relaxation operator is determined by the reservoir parameters g.

and the matrix elements S.. between the wave functions i> and lj> of theii

adsorbate. Both gij and Sij can be evaluated directly, once the kind of

substrate and the molecular wave functions (internal modes), or the binding

potential (vibrational coupling to a crystal), are prescribed. 1 5

The relaxation gives rise to an effective width of the levels (their

inverse lifetimes). If we assume that the overlap between different

resonances is negligible, then we only have to retain couplings between

pairs of levels in Eq. (4.11), rather than between four levels

simultaneously. If we further neglect the imaginary part of g.. (the level

shifts), then Eq. (4.11) attains the familiar form16

ro= ai {P o + oP.- 2P. <iloli>) , (4.13)

ij
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in terms of the rate constants aj for the transitions Ii> IJ>

a.j = Re ck££k Sk 12 Regkt (4.14)

It is easy to check that the simplified form (4.12) leads to the master

equation (1.1).

V. EQUATION OF MOTION

"* - Numerical solution of the equation of motion (3.3) requires an

expansion in matrix elements. With Eq. (4.11) for the relaxation, and

L ap0 = wi(Ji><iJP 0 - Poli><il) (5.1)

for the free evolution, we obtain

mMnP0In> -i(m'p n) - {cii<jJp IOn> + c n <ml Polj >)d t' 2 Lmllj niij 0
ij

fl *
+ 1 (c <jIPoIi> + c. .<ilpolj>) (5.2)"'" +2 {Cinmj imnj

i j

If we subsequently set m = n and use pOt = POP we find

Z' 4,dt 2 ij {mij iJ mmj O

+ Hermitian conjugate (5.3)

for the time derivative of the population <m1Polm>. This result is by no

means equivalent to the master equation (1.1). Even if we were to neglect

the imaginary part of the coefficients, then the time evolution of the

populations would still couple to the real part of the coherences <jlpolm>

(j m i), due to overlapping resonances. Conversely, the time evolution of

the coherences, as it follows from Eq. (5.2) with m * n, couples to the

.4..,j..-..-..-. ..-..,..~.-..- - .- - 4- . . . - , . , . . .. " .. ..-.......-. ..
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populations and to every other coherence, In contrast to the simple

exponential decay (Eq. (1.4)) in the limit of non-overlapping resonances.

In conclusion, if the widths of transitions become comparable with the level

separations, it is inevitable to take the coherences into consideration,

which in turn prohibits the derivation of a genuine master equation. Stated

otherwise, in this case a random-phase approximation cannot be justified.

VI. STEADY STATE

Of particular importance is the long-time solution p0 = p0 (t

This steady-state density operator obeys d 0/dt = 0, and its matrix elements

i  follow from Eqs. (5.2) and (5.3) with the left-hand sides replaced by zero.

The relaxation of the reduced density operator to a steady state is a result

of the coupling to the substrate. Apart from extravagent situations, this

0 is unique. Therefore we can solve Eq. (5.3) by trial and error. If we

assume that the coherences vanish in the steady state, e.g.

<ipj01j> = 6ij<ilo01i> = 6.j i , (6.1)

then Eq. (5.3) reduces to

(n.a n.a..) = 0 , i  , (6.2)

where the rate constants a. are defined in Eq. (4.14). This equation is
i.

exactly the same as Eq. (1.1) for t - =, so with the left-hand side set

equal to zero. Hence the long-time solution of the density matrix is

diagonal, and determined by the Golden Rule transition-constants a... Note

that the imaginary parts of ck do not contribute. In terms of the

sclution k of Eq. (6.2) and the projectors Pk' we can write p0 as

O n (6.3)

k



which will be used in the next section.

Only in the transient region the coherences affect the details of the

time evolution of the populations n k(t). Therefore it might appear that the

importance of the coupling to the coherences, and in particular the coupling

between different coherences, is marginal. Such is however not the case.

Even in the steady state, where the coherences disappear identically, their

time regression has a great significance for the calculation of observable

quantities. It should be emphasized that, for instance, a level population

is not directly accessible to experimental observation in general.

VII. ABSORPTION PROFILE

A common method to observe resonances of adsorbates is by irradiation

of the surface with a low-power monochromatic laser, and measuring the

absorption as a function of the photon energy (frequency). Probing the

system with a weak radiation field has the advantage that it does not

disturb the molecule (excitation of internal modes), nor desorb the layer or

heat the substrate. Furthermore, the intensity of the radiation (scattered

or transmitted) can be detected with a high accuracy, partly due to the fact

that only a relative measurment is required, which relates the absorption at

a particular frequency to a calibrated off-resonance background level. Care

should be exercised, however, in the interpretation of the spectrum. It is

not the free molecule which absorbs the radiation, but the joint system of

molecule, substrate and interaction. Conversely, this feature provides an

interesting tool to investigate the molecule-surface interaction (binding

potential, charge-exchange mechanism), or properties of the substrate

(dispersion relations of phonons or polaritons). Especially for a

transparent crystal, like for instance IR light on KCI, information about

" the crystal can be obtained by spectroscopic methods in this way, which is

%U
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not feasible without the coating. The adbond-mediated absorption profile

.- ', will reflect the details of the coupling mechanism of the molecule to the

substrate, and the properties of the solid itself. We remark that even if

both the adsorbate and the substrate are transparent for a particular

frequency, the bond can be optically active. This is for instance the case

for rare-gas atoms on an alkali-chloride crystal. Then the absorption

profile will reveal the properties of the wave function of the vibrational

state, and as we show below, in great detail.

If we indicate by p the dipole-moment operator of the molecule or the

bond (or both), and by c the polarization of the probe beam, then the

absorption profile is determined by the time regression of the operator

d = -E (7.1)

With d(t) the Heisenberg representation of d, the number of absorbed photons

per unit of time from the incident field with frequency w equals
1 7

-- "Ip0}2)-1~ 0 iwt )±

I() = 2 c) Re dt e Tr P[d(t) ,d] , (7.2)

where I is the laser power (energy per unit of time through a unit area,

perpendicular to the direction of propagation). Multiplication of I(W) by

V gives the absorbed energy per unit of time. Here, _ is the thermal-

" equilibrium state of the entire system, and the time regression of d(t) is

governed by the Hamiltonian H + H + SR from Eq. (2.1).... a r

After a transformation to the Schr6dinger picture, we can eliminate the

reservoir degrees of freedom from the integrand in Eq. (7.2) along exactly

the same lines as we derived Eq. (3.3) for the reduced density operator

0 0o(t). We obtain

.. '.1
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% t "[d,P 0  (7. 3)
TrP[d(t) ,d] Tr d e 0

a

where Tra runs over the adsorbate states only. Equation (7.3) can be

.$ regarded as Liouville-operator representation of the quantum-regression

theorem. 18 Then we insert Eq. (7.3) into Eq. (7.2) and perform the time

integration, which yields the representation

I(w) 0  ) IReTra w - L + ir [dP 0 ] (7.4)
a

in terms of an operator inversion. The upper limit t = does not

contribute, due to the identity

q,_i(La ir)t

lim e a - [d. 0] = O0 Tr a[d' 0] = 0 (7.5)
t -

which in turn follows from the facts that _p is the solution of

(La ir)6 0 = 0 (7.6)

and that the trace is conserved in a time regression with exp(-i(L -ir)t).
a

We recall that the commutator [d, O] gives rise to the terms do0 and O d ,

which correspond to stimulated absorption and emission in the laser mode

respectively. The profile I(w) is the balance between these two processes.

Since we suppress the degeneracies of the levels, we can expand the

operator d on the adsorbated states as

d u dijli><j l  (7.7)
ij

With the representation (6.3) of the steady-state solution, we find

'"[dop 0 1 (nj n ni d ijli><jl (7.8)

ij

"...

. ,. . , . . , .. .. . , . .', , , , ,. , . , .. " -. -. .... " " ,
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4.h

Substitution into Eq. (7.4), expanding d as in Eq. (7.7), and taking the

trace then gives

I€,0 
2c)-I ~ I -i79

I(w) n- )Re d dkt<kl( ii><j{)Iop (C0C jk w-L +
ijkt a

(7.9) i-

The matrix elements of w - L + ir can be read off inmmediately from Eq.a

(5.2), and after inversion of this matrix, Eq. (7.9) yields the absorption

profile. Hence for a system of N levels, the evaluation of I(w) requires

only the inversion of an N2 . N2 matrix.

From the explicit representation (7.9) it follows that 1(w) is

determined by the time regression of the coherence Ii><jI, (i 9 j). In the

time domain, like in Eq. (7.1), we propagate Ii><jI with exp(-i(L -ir)t),
a

and then take the coherence <ki... 10 of the result at time t. A Fourier

transform then gives the spectral profile. This elucidates the importance

of the coherences in the observation of adsorbates with spectroscopic

methods. It is their time regression which determines the spectral

distribution, whereas the popilations only appear as an overall factor n. -

n.. Furthermore, the spectral resolution involves the complete operator L
1 a

i7, which represents the free evolution of the molecule, the damping, the

level shifts, and all the couplings between coherences and populations.

In the secular approximation, Eq. (4.13), where only couplings between

pairs of levels are taken into account, only the terms with i k, j E.

survive in Eq. (7.9). We notice that for (i,j) * (k,t) an overall factor

d arises, rather than Id 2. This product of matrix elements carries

information on the relative phases of the dipole-moment matrix elements di3 ,

which is not the case in the secular limit, where only Id .12 appears.

Therefore, for transitions which have a sufficient overlap, it should be

feasible to extract their relative phase from an absorption measurement.

-a-

'I.,, '. " .. -.- - -.. ' .- ." " ." " ' " '" " " ' ' -" " . . ." '' '' -, ..'''' i " ' ,' . . " . "- -", .-. "
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VIII. TWO-LEVEL SYSTEM

In order to display the significance of the various notions, we utilize

the two-level system. For the case of a vibrational coupling of an atom to

a crystal, this situation can occur if the potential well is shallow enough,

so that it supports only two discrete levels. The steady-state populations

are readily found from Eq. (6.2). We obtain

a2 1  a12  (8.1)

1  a + a 2  a +8a
a2 1  12 a2 1  12

Next we neglect the self-coupling of a level, which means that we assume

S = S = 0. The equation for the coherence p21(t) follows from Eq.11 22 2

(5.2). Explicitly

() -iAdP(t) 1(c + c )P (t)
d 21(  =  2121( 2 2112 1221 21

If *

+ (c2 1 2 1 +c cl22)Pl2(t) (8.2)

and the equation for p12(t) = P2 1(t) follows after a complex conjugation.

We shall write = for the resonance frequency of the adsorbate, before

coupling to the reservoir, and we introduce the notations

11 2
I, = 2Is 2 1 1 (g21 + g12 ) , (8.3)

S2 1 - IS2 1Iexp(is) , (8.4)

where the latter defines the phases 0 of S21* Then Eq. (8.2) attains the

form

2(t) ( i 0 + n)2(t) + q exp(2 io)P (8.5)
dt2 0~ 21 12 '(85

which shows immediately that P2 1 = P1 2 = 0, in agreement with Eq. (6.1).

The second term on the right-hand side represents a coupling between the
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coherences p2(t) and p 1 2 (t). This term would be discarded in a secular

approximation.

Equation (8.5) together with its complex conjugate constitutes a closed

set, which has the characteristic frequencies

(+ ±W (W * ri) 1 (a + a1 2 )20 i(a2 1 + a12), (8.6)0 ={O( 0  4 i(1 12 2) 21 1(a2

where we used

n + n a2 1 +a 2  (8.7)

In the secular limit w >> a21 + a12 they reduce to W ± w0 - Ji(a 2 1 +

a ), and hence the resonance is situated at w with a width equal to 1(a

+ a 12). Conversely, for a2 1 + a1 2 >> W0 we find w+ 0, w_ -i(a2 1 + a12),

which are both situated at w = 0.

The full absorption profile I(M), Eq. (7.9), is determined by the

Liouville operator w - L + ir. From Eq. (5.2) we can easily construct aa

matrix representation for -i(L a  ir), which in turn gives

w + ia21 -ia12 0 0

-ia w + ia 0 0

21 12
w- L + ir =

a 0 W 0 + i -in exp(2i0)

0 0 -inexp(-2io) W + W0 + in

(8.8)

on the basis 12><21, 11><11, 12><11, I1><21. Inversion of this matrix and

substitution into Eq. (7.9) then readily yields

a - a 2iw0
21 12 1 e0I(w) =BI Re (8.9)

p a2 1 + a12 IT (W + W0 + in*)(W W w0 + in) + r.* (

where we introduced the Einstein B-coefficient

N
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B 2c  21 _ 2 (8.10) -

22
0

pertaining to stimulated transitions between Ii> and 12>. Notice that the

phase 0 of S disappears from I(w), as could be anticipated. Only relative
21

phase differences between wave functions of pairs of levels might have a

significance, and hence the phase difference 0, related to the wave

functions of a two-state system, should vanish in observable quantities.

The resonances of I(M) are situated at the real parts of the zero's w± of

the denominator. Since Re w+ = -Rew- there is only a single peak in l(w)

for positive frequencies w.

In the secular limit we can omit the term nn* in the denominator (with

respect to w0 2), and then the profile reduces to

21 - 1 2 1 ______

I(W) = BI Re + (8. 1 Re)
s p a2 1 + a12 r w - w0 + i(

which is a Lorentzian around w0 + Imq, with a half width at half maximum

equal to Re n = 1(a2 1 + a12). In Figs. 1 and 2 we have plotted I(w) and

I(-) for Im n = 0 and for different values of Re n. Note that I(w) ands

I(-) assume the same value at the transition frequency wo, if Im = 0.
s

Increasing Re n shifts the peak in I(w) towards lower frequencies, without a

significant broadening. On the other hand, an increas of Req in I(w)

broadens the line, without shifting it. The qualitative different effects

on I(w), as compared to the approximation I(M)s, arise purely due to the

inclusion of the coherence-coherence coupling. The shift of the line in

I(.) should not be confused with the shift Im n (Lamb shift), which is

always present but, in general, small. Shifts and widths of absorption

lines are directly amenable to experimental observation, and hence a

verification of these predictions should be feasible.

.. .. . .- . ". . . " O.. -- ,
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IX. CONCLUSIONS

Coherences play a pronounced role in the relaxation of adsorbates if

the widths of the transitions (relaxation constants) become comparable to or

exceed the level separations. In the transient region the time evolution of

the populations of the adsorbate states couples to the evolution of the

coherences, which prohibits a description in terms of a master equation.

For t - o (steady state, thermal equilibrium) the coherences vanish, and a

time-independent master equation emerges, which contains the Golden-Rule

transition constants as parameters. Measurable quantities which are

determined by a two-time quantum expectation value, like correlation

functions or spectrally-resolved properties, however, involve the time-

evolution operator L - ir for the density matrix p0 (t). This includes all
a

cou.plings between populations and coherences, and between coherences among

each other. Even in the steady state, where the coherences disappear, their

time-regression operator obviously does not. Therefore, a correct

evaluation of steady-state properties requires that the coupling with

coherences is retained. In other words, a random-phase or secular

approximation is not exact in general.

We have applied a Liouville-operator formalism to derive a condensed

for-m, Eq. (3.3), of the equation of motion for the reduced density operator

PO(t) of the adsorbate. After some algebraic manipulations, and an

expansion in matrix elements, we arrived at Eq. (5.2), which generalizes the

master equation (1.1). It should be stressed that Eq. (5.2) contains the

same parameters as Eq. (1.1), so that no additional information about the

system is required. Only the coupling between the different matrix elements

is nore complicated. Discarding various non-secular couplings yields again

Eq. (1.1).

% ..0
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Subsequently we have considered the probe-absorption spectrum I(w),

which was expressed in the resolvent (w - L + ir) in Eq. (7.9). With aa

two-level example it has been illustrated how the formal expression can be

evaluated, and what the relevance of the coherence-coherence coupling can be

for the spectral distribution. The results have been compared with the

secular approximation, where l(w) is a Lorentzian.
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CAPTIONS

Fig. 1. Absorption profile l(w) from Eq. (8.9) as a function of w. The
)-1 i nt euiy

overall factor BI 21 - a 12)/(21 + a12  is t en to be unity.

Frequencies are in units of w0, and the relaxation constant equals

0.5. The profile which is symmetric around w0 is the secular

approximation I(w) from Eq. (8.11).
5

Fig. 2. Same as Fig. 1. but with 9 - 1.5. In this case the width of the

transition is larger than the level separation, and it is seen that

the resonance at w0 vanishes completely. The combined system of

adsorbate and substrate gives rise to a resonance near w = 0, which

is not found in the secular limit. There the peak at w0 is smeared

out to form a continuous background. This exhibits clearly the

significance of the non-secular couplings if the levels have

overlapping resonances.
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